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We study wave breaking in a beam-plasma system placed in an infinite magnetic 
field, with finite geometry. A purely nonlinear nondispersive equation is deduced 
with the help of a reductive perturbation technique. Numerical analysis dearly 
shows that the initial profile of the wave (either parabolic or circular) grows 
with time leading to a discontinuous form of the wavefront, the phenomenon of 
wave breaking. 

1. INTRODUCTION 

Nonlinear wave propagation in a plasma is a problem of immense 
interest from both the theoretical and experimental standpoints (Lonngren, 
1983). In this respect much work has been done in relation to the formation 
of the soliton (Lamb, 1980). On the other hand, an important class of 
events in a plasma is that of the breaking of nonlinear waves, which can 
takeplace for various reasons. Here we analyze this phenomenon in a 
beam-plasma system, taking account of the finite boundary condition (Das 
and Ghosh, 1986). It may be very much pertinent to point out that such a 
finite geometry is of utmost importance in actual experimental situations in 
a plasma. 

2. FORMULATION 

Here we consider the case of a hot plasma placed in an infinite 
magnetic field with the axis of the field pointing along the x-axis. We 
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furthermore assume that the usual hydrodynamic description is possible. 
The governing equations can be written as 

Onf 
n~ O-~x Ox = 0 

r + ~X  (niv i )  = 0 

Ov~ Ovi Oc~ 3a Oni 
~-f +vi-~x +-~x +(1  + ~)2 n '~x = 0  

OnCe 0 ~ 
~---'~ "1- ~X  ( n e V e ) = 0 

(1) 

and the expansions 

_ 0 s 2 n ~2) ni--ni +En~ I )+ + " "  

v ; =  v ~ + Ev~ ~) + dv~ 2) + . . .  

nb_ .b(0) + End1) + E2neb(2) _1_... e --  lge 

v~ = V e ~~ + EVbe o) + d V ~  ~2) + ' ' "  

4' = r + ECb~ + d~b ~2) + ' ' "  

(3) 

b Ov~ -4-. n%b Ov~ ~x OC ~e~---.~eTx--~ +O-gx--O 

Oz 2 t--~x2 = n"e + nbe - ni 

In the above equation nPe and ne b denote, respectively, the electron density 
in the plasma and the beam, and ni that of the ions; v e b, V~ denote, respectively, 
the corresponding velocities of the two types of electrons and v~ that of the 
ions; ~b denotes the electrostatic potential. We have normalized time to the 
inverse of the ion plasma frequency cof= (4rCmee2/m~) 1/2 where e is the charge 
of the electron and m~ is the mass of the ion. The densities have been 
normalized to neo, the equilibrium electron density. The space coordinate x 
has been normalized to the electron Debye length ;~r~ = (TeP/41rmeo e2) 1/2, 
where T~ is the electron temperature. Furthermore, all the velocities have been 
normalized to the sound velocity of the plasma Cs = ( T P e / m i )  1/2 along with 
0 to T~/e. In the following the subscript zero indicates unperturbed value. 
Let us denote the ratio of the beam to plasma electron density as ot = ne~'/ne,P 
0 = T~/TPe and ion temperature tr = T~/T~, let # denote the ratio me/mi. 

We start by defining the stretched variables (Washimi and Taniuti, 1966) 

= E(X -- 2t), z = E2t (2) 
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are substituted in equations (1). Equating various power of e, we obtain the 
following relations: 

v l "  = 2 - v~ ~ r 
( 2  - v ~ ~  z - 30" 

l+~ t  
n~')  = r (2 - v ~ ~  2 - 3a 

<x v~(l ) (4) ,/b(l) 
2 - -  v o 

jb(l) = 2 --  V 0 q~(l) 
0 - # ( 2  - Vo) 2 

whereas the Laplace equation leads to 

02t~(l) 
Og 2 = q2~b(l) - 0 (5)  

1 + ~  

q2_  2 2 -  3a 0 -/~(2 - v0) 2 1 (5a) 

A simple solution of (5) is 

q~(l) =f (~ ,  z) sin qz (6) 

On the boundary z = b, we must have q~o)= 0 implying q = nn/b. Expres- 
sions (4) along with equation (6) yield the explicit form of all first-order 
quantities. Now in second order of E we get 

1 + ~ sin Of On'Z) + (1 + a) oyez) 
22 - 30------ 5 qz-~T -- 2 ~ 0--'-~- 

22(1 + or) in z Of 
+ ( - ~ -  ~-t-~ s qzf-~=O (7) 

22 --/L ~v~2) 0~(2) 30" On} 2) + sin 2 qz 
- O~ + ~  + 1 ~  O~ (22-30.) 2 

af 2 . af  3,, af  -F sin qz-~z + sin2 ~ = 0 (8) xfvg~7 2 2 _  3a (22 - -  30.) 2 qzfo~ 

an~ ~) av~ <:> a . af 
- (2 - Vo) W + ~ ~ + 0 - .(2 - Vo) ~ sm q~ 

~ ( 2 - V o )  �9 2 , - ~ f  , ,  
+ [0  - # ( 2  - Vo)212 s m  qzj-~ = u ( 9 )  
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ave( 2 ) (3r _ On~ (2) 
--  #a(a --  Oo) - - ~  - a - ~  + O ~ + sin 2 qx 

X [ o _ # ( 2 _ v ^  ~212f + #e(2-Vo)  2sin Of o., J r 0--#(2--Vo) qz~z=O (10) 

~(1)2 
02~b(2) = ~b (2) + + nO (2) n~ 2) (11) 

& 2  T - 

A simple manipulation of equations (7)-(11) leads to 

02 /'O(ib(2)'~ -- 2 & b(2) Of Of 
OZ2 ~k--'~'-) "l- q - - -~  + A sin qz-~t + B sin2 qz f ~ = O (12) 

whence multiplying (12) by sin qz and integrating from 0 to b, we get 

df ( B f : s i n q z d z ) f ~ = O  (13) 
T ,  + 

where 

and 

2#a(2 -- v0) 2),(1 + a) 
A -  + 

[0 - #()~ - Vo)2] 2 (22 - 3a) 2 

B = 2#a(;t -- Vo) 2 2#~(2 -- Vo) 

[o - ~,0,  - Vo)~Y [o - ~,(;t - VoY] 3 

322(1 + a) 

- -  [ 0 " - -  # ( 2  - -  V0)2]  2 "{- (A 2 - -  30") 3 

3o-(1 + a) 
+ (22 __ 3~X) 3 1 

On the other hand, from the condition that q = nrc/b and equation (5a) we 
get the following equation determining the phase velocity 2: 

/L 4 - -  / . ) 0 2 3  - -  C / L  2 + D 2  + E = 0 (14) 

where 

1 + ~  
C =  3a -Vo2+ 4 1 + n2n2/b 2 #(1 + n27r2/b 2) 

2Vo (1 + o 0 
D = 6o'2vo 1 + n2~2/b 2 

0(1 + a )  1 + a  
E =,u(1 +n2rc2/b 2) -3av2 1 +n2~z2/b 2v2+ 

3aa 
#( 1 + n2~r2/b 2) 
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Equation (13) is the derived equation, which is seen to be dispersionless but 
nonlinear. Such an equation is also known as the Witham equation in the 
literature. 

3. SOLUTION AND WAVE BREAKING 

Since equation (13) is purely nonlinear and first order, it can be solved 
in the functional way. One can observe that the solution f(~, ~) can be 
written as 

f = q~(~ - elfT) (15) 

where ~b(~) denotes the initial form of the wave profilef. Here cq stands for 
(B/A)fbo sin qz dzo 

Let us assume that ~b is parabolic in shape. That is, 

d2 = a Z -  r z (16) 

whence equation (15) can be explicitly solved for f and we get (Bhatnagar, 
1982) 

(2~l~T - 1) + (4~2"c2a 2 + 1 --  4~Xl ~T) 1/2 
f(~, z) - 2 ~  2 (17) 

where the plus sign before the radical has been chosen from the consider- 
ation of the limiting value o f f  as �9  On the other hand, if the initial 
wavefront is circular, 

q~2=a2--~2 (18) 

then f turns out to be 

f({, ~) = 
~l~z + (a 2 - 4 2 + a 2 ~ z 2 )  '/2 

1 + ~ 2  (19) 

To ascertain the behavior of the wavefront we have plotted numerically 
equations (17) and (19) for various values of the parameters in Figs. 1-3. 
For this purpose we required the values of the phase velocity 2 to be 
determined from (14). We took v0= 0.5, 0 =0.1, a =0,  ~ = 0  or 0.5, and 
b = 0.8 or 15 and determined 2 from equation (14) and used (17) and (19) 
to study the evolution of the wave profile. It is clear from Figs. 1 and 2 that 
the parabolic wavefront degenerates into two pairs of  straight lines and 
subsequently the wave breaks. This happens due to the excessive accumula- 
tion of energy in some particular mode and due to the absence of any 
dispersion. Figure 2 shows that for the small dimension of the confining 
system (b < 1) the breaking sets in earlier. So the inference is that the 
system becomes more unstable with reduction in b. Similarly, Fig. 3 shows 
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the situation when the wavefront at time t = 0 was circular. From this 
analysis it appears that one form of  explosive instability is manifested in 
the phenomenon of  wave breaking. 

4. DISCUSSION 

In the above analysis we showed that it is possible to study wave 
breaking in a plasma placed in an infinite magnetic field with finite 
boundaries, with the help of  a reductive perturbation technique. Such 
phenomena are important for understanding explosive instabilities in vari- 
ous situations involving laser plasma interaction. 
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